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Abstract —This paper formulates and shows how to solve the problem of selecting the cache size and depth of cache pipelining that
maximizes the performance of a given instruction-set architecture. The solution combines trace-driven architectural simulations and
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the timing analysis of the physical implementation of the cache. Increasing cache size tends to improve performance but this
improvement is limited because cache access time increases with its size. This trade-off results in an optimization problem we
referred to as multilevel optimization, because it requires the simultaneous consideration of two levels of machine abstraction: the
architectural level and the physical implementation level. The introduction of pipelining permits the use of larger caches without
increasing their apparent access time, however, the bubbles caused by load and branch delays limit this technique. In this paper we
also show how multilevel optimization can be applied to pipelined systems if software- and hardware-based strategies are

considered for hiding the branch and load delays.

The multilevel optimization technique is illustrated with the design of a pipelined cache for a high clock rate MIPS-based
architecture. The results of this design exercise show that, because processors with pipelined caches can have shorter CPU cycle
times and larger caches, a significant performance advantage is gained by using two or three pipeline stages to fetch data from the
cache. Of course, the results are only optimal for the implementation technologies chosen for the design exercise; other choices
could result in quite different optimal designs. The exercise is primarily to illustrate the steps in the design of pipelined caches using
multilevel optimization; however, it does exemplify the importance of pipelined caches if high clock rate processors are to achieve

high performance.

Index Terms —Optimizing cache design, trace-driven simulation, multichip modules, pipelining, caches, cache access times,

macromodels of delay.

1 INTRODUCTION

T HE performance evaluation of cache-based systems has
received considerable attention [1], [2], [3]. These stud-
ies have considered the impact of architectural-level issues
like cache size, associativity, line length, write policies, etc.
However, different cache organizations, in particular, size,
change a cache’s access time, and, thus, also affect perform-
ance. Increasing cache size tends to improve performance,
but this improvement reaches a point of diminishing re-
turns because cache access time increases with its size. In
this paper, we show how to account for this by simultane-
ously considering two levels of machine abstraction that are
normally dealt with separately in the design process:

1) the architectural level, where a range of cache sizes
and different pipe depths are considered; and

2) the logic gate delay level which determines the feasi-
ble cycle time of these different combinations of cache
size and pipe depth.

Architectural trade-offs are characterized with simulations
driven by long traces of multiprogrammed application
codes. These simulations also account for hardware and
software techniques for hiding pipeline delays, so that the
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full effect of cache pipelining can be assessed. The feasible
cycle times of the different architectures are determined
from detailed timing analyses of critical paths. We refer to
the simultaneous consideration of two level of machine
abstraction as multilevel optimization [4], [5].

The methodology is demonstrated on the design of a pipe-
lined cache for a high-performance microprocessor, which is
based on the MIPS instruction set architecture (ISA) [6] and
was planned to be implemented in GaAs direct-coupled FET
logic with multichip module (MCM) packaging [7]. The use of
GaAs supports fast logic, but at relatively low integration den-
sities. This suggests a simple high clock rate pipeline imple-
mentation with MCM packaging to reduce interchip delays,
which became the starting point of the design exercise.

A block diagram of the processor is shown in Fig. 1. The
cache is split into instruction and data halves (i-cache and
d-cache) to provide an instruction data access every cycle.
Implementing a pipelined cache involves splitting the ac-
cess of the cache into two or more stages and placing
latches between each stage [8]. The complete architecture
includes a floating point unit, a memory management unit,
and a second level of cache. Our experiments are per-
formed for i- and d-cache sizes that varied from 1K to 32K
words (W) of 32-bits, with block sizes of 4W and miss pen-
alties of 40 nanoseconds (ns). Further details, and the more
complex problem that results from varying the miss penalty
by changing the line size, transfer rates, or introducing a
second cache level, can be found in [9].

Our experiments show that as many as three branch
delay or load cycles can be hidden by static compile-time
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Fig. 1. The processor architecture shows the range of parameters
considered in this study and the circular access paths of the pipelined
primary i- and d-caches.

instruction scheduling or by dynamic hardware-based meth-
ods. Static schemes are more effective at hiding branch delay
cycles, but dynamic methods are more effective at filling load
delay slots. When these results are combined with results
from cache simulation and timing analysis, the conclusions
are that the caches with two to three pipeline stages have
higher performance than caches with fewer pipeline stages.
Of course, the results are only optimal for the implementa-
tion technologies chosen for the design exercise; other choices
could result in quite different optimal designs. The exercise is
primarily to illustrate the steps in the design of pipelined
caches using multilevel optimization; however, it does ex-
emplify the importance of pipelined caches if high clock rate
processors are to achieve high performance.

The organization of this paper is as follows. The next
section of the paper, using time-per-instruction as the per-
formance metric, formulates the cache optimization prob-
lem when cache access can be pipelined. It also describes
the multilevel optimization method used in this study. In
Section 3, simulation is used to show how the number of
clocks per instruction (CPI) is affected by the primary in-
struction and data cache organizations. The resulting data
characterizes CPI as a function of the cache size, pipeline
depth, and processor cycle time. In Section 4, we use a sim-
ple analytical delay model, or macromodel, for MCM-based
caches to show how the cycle time is affected by the size of
the cache and its pipeline depth, developing a functional
dependence between cycle time, cache size, and pipe depth.
The results of Sections 3 and 4 are combined to yield the
final performance evaluation of pipelined primary caches in
Section 5. Concluding remarks are given in Section 6.

2 THE CACHE OPTIMIZATION PROBLEM

2.1 The Performance Metric

A widely recognized metric for architectural performance
comparison is the time it takes to execute a realistic set of
benchmarks [10]. Given a specific ISA and compiler, a per-
formance metric that is directly proportional to execution
time is average time per instruction (TPI). The equation for
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TPI can be written as

TPI = CPI X tepy,, 1)

where CPI is the familiar clocks-per-instruction and t,, is
the cycle time of the CPU. In the following discussion, we
use TPI as the performance metric. The optimization prob-
lem seeks to minimize TPI subject to the constraints of ar-
chitectural organization and implementation that are im-
plicit in the two terms on the righthand side of (1).

The CPI term in (1) is a function of cache size, S, that de-
creases when S increases, because larger caches reduce the
miss rate, m, and with it the total penalty due to cache
misses. CPl is also a function of the depth of the pipeline to
the instruction cache, d,, because this pipeline can result in
branch delays that cannot be filled with useful instructions.
These hazards in the piplined processing of instructions
occur more frequently as d, increases, leading to an increase
in CPI. Similarly, CPI is also an increasing function of the
depth of the pipeline to the data cache, d,. However, the
exact relationship between pipeline depth and CPI is more
complex because, as we showed in [9], a significant number
of load or branch delay cycles can be hidden by static com-
pile-time instruction scheduling or by dynamic hardware
based methods. This tends to slow the increase in CPI with
d.' To further complicate matters, in the case of software
techniques, i-cache miss ratios tend to increase because
these techniques increase code size. It is necessary to rely
on trace-driven experiments to determine the net result of
these conflicting effects when characterizing the exact de-
pendence that CPI has on d.

Finally, CPI is a function of t_,, because we are consid-
ering the case where the cache miss penalty, P, is a fixed
time penalty. The contribution to CPI due to cache misses is
thus mP/t,,, making CPI a decreasing function of t_,,. We
can make explicit the foregoing dependencies by writing
CPl as CPI(S, d, t,).

As we have noted earlier, the t_,, term in (1) is a function
of cache size, increasing as S increases for a given pipeline
depth, d. It is also a function of d, because increasing the
depth of the pipeline allows the clock cycle to be shortened.
These dependencies can be made explicit by writing t,, as
t..,(S. d), and then (1) becomes,

TPI = CPI(S, d, tepy ) X tepy (S, d). ()

2.2 Multilevel Optimization

Equation (2) clearly identifies the two levels of machine
abstraction across which the optimization must be per-
formed. CPI is an architectural figure of merit and t_,, is a
logic or circuit implementation figure of merit. Architec-
tural level simulations are performed to obtain an empirical
definition of the function CPI(S, d, t_,,) for a range of values
of cache size (S), pipeline depth (d), and cycle time (t.,,).
Only a subset of the values for CPI defined on the points in
the volume <S, d, t_, > are feasible. These are defined by the
values of t,, that can be implemented, given values for S
and d. Within this feasible range of CPI, the minimum value
of TPl is selected as the optimum.

1. We will use d without using a subscript when context makes it clear, or
when d could refer to either the i- or d-cache.
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5diff File comparison - I 2183 15.3 34 20.7 305
awk String matching and processing - [ 209.5 19.0 12,6 14.3 101
doducd Monte Carlo simulation - D 96.3 31.0 10.0 8.7 427
espresso | Logic minimization - I 238.0 19.9 5.6 16.2 17
gee C compiler - I 235.7 233 13.8 20.1 487
integral Numerical integration - D 110.5 37.0 104 7.6 12
linpackd | Linear equation solver - D 4.0 374 19.7 54 10
loops First 12 Livermore kernels - D 275.5 29.3 10.9 53 3
matrix500 | 500 x 500 matrix operations - S 202.2 243 35 35 10
nroff Text formatting - I 15.7 224 10.8 24.6 1701
small Stanford small benchmarks - I/S 16.7 199 8.8 19.6 0
spice2g6 | Circuit simulator - S 297.3 29.8 8.6 8.0 395
tex Typesetting - I 133.8 30.2 14.2 11.7 697
wolf33 Simulated annealing placement - T 1154 30.0 75 14.8 407
xlswins X-windows application - I 522 22.5 17.7 17.1 65294
yace Parser generator - I 193.9 19.6 24 25.2 49
Total 24149 | 247 8.7 13 | 69915

The above set of benchmarks were used to create the multiprogramming traces. Integer benchmarks are denoted by (1), single precision floating point benchmarks by
(S), and double precision floating point by (D). The heading “Control transfer instructions” (CTIs) includes both branches and unconditional jump instructions.

The architectural simulations were performed using a
trace driven simulator, cacheuM, originally developed to
study two-level cache organizations [11]. The traces were
created using the MIPS program analysis tool pixie [12]
from load modules of the benchmark programs listed in
Table 1. A record of system calls was also made during the
normal execution of the set of benchmarks. Each bench-
mark was used to represent a single process. To model the
effect of multiprogramming, a system call file and a process
configuration file controlled context switches between
benchmarks when system calls were encountered or when a
predefined time quantum had expired. More details can be
found in [9]. The benchmarks included selections from the
SPEC suite, the Livermore loops, and an X-windows appli-
cation that generated a large number of context switches.
The benchmark load modules were created using the opti-
mizing compiler developed for the MIPS ISA [13]. In addi-
tion, we developed a post-processor to modify the traces
produced by pixie to simulate the hazards that result from
software or hardware optimization techniques for hiding
pipeline delays. The CPI values presented in this paper rep-
resent the weighted harmonic mean from all of the bench-
marks in this table. The weight for each benchmark corre-

spond to its fraction of total execution time. The instruction
count used to calculate CPI is that of optimized MIPS R2000
code for an architecture with no load or branch delay cycles.

Delay macromodeling and timing analysis are used to
determine t, (S, d) for specific values of S and d. The timing
analyzer used in this study, minTc, is capable of finding the
minimum clock cycle time of a synchronous digital circuit
[14], given accurate macromodels of gate and interconnect
delay [15]. It thus sets a lower bound on t_, (S, d) for specific
values of S and d, and for a particular technology. Values
greater than the lower bound for t,, are obviously feasible
and may be desirable because they may cause CPI(S, d, t.,)
to decrease due to its inverse dependence on t,,.

Fig. 2 illustrates further the steps in multilevel design
optimization. A set of candidate designs, obtained by
varying S and d, is encoded into the trace-driven simulator
and the postprocessor is also changed to reflect code op-
timizations and hardware techniques for reducing hazards
for each value of d. The set of designs is simulated and the
values for CPI(S, d) are recorded. The simulator needs the
cache miss penalty in cycles to calculate CPI. It is a straight-
forward matter to recalculate the effect of varying t_,, on
CPI, provided the relationship between the miss penalty in
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time and cycles is known. In our example, a fixed time pen-
alty of 40 ns is used to represent memory access time. The
implementation of the cache refill path requires an 8 ns set-
up and has a 2W wide bus running at 16 ns per transfer.
Thus, the penalty in cycles is given by,

block-size
* refill-path *

tepu ‘

©)

where block-size = 4W and refill-path = 2W. The realizable
values of t,, corresponding to the values of S and d used to
determine CPI(S, d, t,,) are obtained from implementations
of the CPU. The implementation starts with a register-
transfer level (RTL) description in an HDL (Verilog in our
case), which is then synthesized to a physical layout [16].
The timing analyzer, minTc, is applied to the resulting lay-
out and the minimum value of t_,, is obtained. Changing
the value of d does not require a complete resynthesis step;
it can be accomplished through a retiming analysis again
using minTc (see Fig. 2).
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Program
traces
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Parameterizable
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simulation
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and
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Layout of latches
logic
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} 4
TPI = CPI x tcpu

Fig. 2. Multilevel design optimization: The process starts with an ar-
chitecture defined in an HDL that is then synthesized. The design is
successively refined until the design specifications are satisfied.

3 CPI MEASUREMENTS

In this section, we present the architectural level simula-
tions performed to obtain an empirical definition of the
function CPI(S, d, t,,) for a range of values of cache size (S),
pipeline depth (d), and cycle time (t.,,). We do not yet re-
strict the function to feasible points in the <S, d, t_, > space.
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3.1 The Effect of Branch Delays

When a control transfer instruction (CTI) is executed, the
next instruction to be fetched must be delayed until its ad-
dress is known. The pipeline depth of the i-cache, d, is the
number of “branch delay” cycles or slots by which the next
instruction is delayed. A number of hardware and software
schemes have been proposed to limit this effect on CPI [17],
[18], [19]. Two representative schemes are evaluated here: a
software-based delayed branch with optional squashing,
and a hardware-based branch-target buffer.

In the software approach, we assumed delayed branches
with squashing and a static prediction policy in which
backward branches and unconditional jumps are predicted
to be taken, and forward branches are predicted to be not
taken. Based on the prediction policy, the compiler tries to
fill the branch delay slots with useful instructions from

1) before the branch,
2) after the branch, or
3) the branch target.

Instructions from after the branch must be squashed if the
branch is taken and instructions from the branch target
must be squashed if the branch is not taken. Squashing in-
serts noop instructions into delay slots, and there is a code
expansion penalty associated with using instructions from
the branch target because they must be replicated. This is
accounted for in our simulations.

Our experiments show that, as expected, CPI increases
with the number of branch delay slots as a result of

1) increases in the number of i-cache misses due to the
larger code size; and

2) the extra useless instruction references that are exe-
cuted when the static branch prediction is incorrect.

Table 2 lists, for one, two, and three delay slots, the static
branch prediction statistics, cycles per branch, and addi-
tional CPI due to extra instruction reference cycles. The
data in this table illustrates that static branch prediction
with optional squashing is an effective scheme for mitigat-
ing the branch-delay penalty. For example, since 13 percent
of instructions executed are CTlIs, three branch delay slots
could increase CPI by 39 percent; in fact, due to effective
branch prediction, the increase is only 8.7 percent.

In the hardware approach we use a 256 entry branch-
target buffer (BTB) with each entry being an address tag, a
branch target address, and a 2-bit saturating counter for
branch prediction [17]. If the BTB correctly predicts a branch
taken, the target address is used as the next instruction ad-

TABLE 2
BRANCH PREDICTION PERFORMANCE
CTIs Predicted Taken CTIs Predicted Not-Taken
Delay slots Cycles per CTI | Additional CPI
% of total % correct % of total % correct
1 47 93 53 49 1.092 0.012
2 47 93 53 49 1.339 0.044
3 47 93 53 49 1.670 0.087

Performance of branch prediction versus number of banch delay slots: The numbers of predict-taken and predict-not-taken CTIs are expressed as percentages of
the total number of executed CTls. CTls make up 13 percent of all executed instructions. Average prediction accuracy = (93 + 49)/2, i.e., about 70 percent.
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dress without a stall. When the BTB mispredicts a branch,
we assume there is a one cycle stall to fill the BTB, in addi-
tion to the stall cycles necessary for branch delay.

Experiments with the hardware approach for hiding
branch delay cycles show that the BTB achieves a hit rate of
over 91 percent; however, incorrect predictions reduce this
hit rate to a branch prediction accuracy of 86 percent. This
is still better than the static prediction accuracy of 70 per-
cent. However, the overall effectiveness of the BTB method
is reduced because we assumed an extra cycle is required to
update the BTB with the correct information every time
there is a BTB miss or an incorrect prediction. When these
cycles are included in the branch penalty, the performance
of the BTB is reduced to that shown in Table 3.

TABLE 3
BTB PREDICTION PERFORMANCE
Delay cycles | Cycles per CTI | Extra CPI
1 1.44 0.057
2 1.65 0.082
3 1.85 0.10

Table 2 and Table 3 can be used to compare the two ap-
proaches. The static scheme performs better because our
simulations showed that it allows 0.5 to 0.8 of the delay
slots to be filled with instructions from before the CTI, so
that fewer cycles are wasted, even if the CTI prediction is
incorrect, while the BTB scheme loses one cycle per delay
slot every time a CTI misses the BTB or the CTI prediction
is incorrect. One could argue that the relatively small size of
the BTB compromises its performance. The BTB was re-
stricted to 256 entries as a result of the integration levels
available to us. Implementations that favored higher levels
of integration could alter the conclusions. However, other
researchers have also shown that static branch prediction
techniques using sophisticated program profiling and fetch
strategies are competitive with much larger BTBs [19]. Of
course, for static prediction, the additional CPI due to in-
creased i-cache misses must be considered. Although this is
outside of this discussion, we have shown elsewhere that,
for small cache sizes and large miss penalties, this would
give the performance edge to the BTB approach [9]. Nev-
ertheless, because its performance is roughly comparable
and its hardware cost is lower, the static prediction scheme
is used in the remainder of the cache experiments.

Fig. 3 plots the total CPI for a range of i-cache size and
delay slot numbers. This figure shows that, for i-cache sizes
of one to 16KW, it is always possible to decrease the CPI of
the system by doubling the cache size and increasing the
number of delay slots by one, because, in this region of i-
cache size, the relative increase in CPI from increasing the
number of delay slots (0.03-0.15) is less than the decrease in
CPI from doubling the cache size (0.05-0.20).

Finally, an example of the dependence of CPI on t,, is
illustrated in Fig. 4, which plots CPI versus t,, for various
cache sizes in a system having two branch delay slots and a
miss penalty of 40 ns. Smaller caches are affected more by
the code size increase that comes with additional delay
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Fig. 3. CPI vs. i-cache size for different numbers of branch delay slots,
d. This establishes CPI(S, d), the dependence of CPl on S and d. The
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Fig. 4. CPl vs. t_,, for different i-cache size and with d, = 2. The curves

are not smooth because of the need to make the miss penalty an inte-
ger number of cycles.

slots. Likewise, the higher miss ratios of smaller caches
means that they experience more performance loss as the
miss penalty in cycles is increased. Fig. 4 shows that CPI
decreases as t,, increases, because the miss penalty (in cy-
cles) decreases with increasing t_,,. Fig. 4 and similar plots
for the remaining values of d, in the range zero to three can
be computed directly from Fig. 3 when the miss penalty in
nanoseconds is given. In our example MIPS-based proces-
sor, the miss penalty is 40 ns, and, thus, the penalty in cy-
cles is given by (40/t_,,). Combining this with the data in
Fig. 3 yields the empirical definition of the function CPI(S,
d, t.) for our range of values of cache size (S), i-cache
pipeline depth (d)), and cycle time (t_,,). We now turn to the
d-cache.

3.2 The Effect of Load Delays

The data cache supplies data to the CPU when load in-
structions are executed. The MIPS ISA has only one mem-
ory addressing mode for all load instructions. This mode,
usually called register plus displacement, uses a 16 bit
signed displacement from a 32 bit general purpose register.
The number of CPU cycles, or load delay slots, between the
execution of a load instruction and the time at which the
data arrives at the CPU is determined by the pipeline depth
of the d-cache, d,.
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Table 4 shows the CPI increase that results from one, two,
and three load delay cycles. The data in this table was again
produced using our simulator in [9]. Two sets of simula-
tions were performed to measure the impact of software
scheduling and hardware scheduling to fill load delay slots.
In the first set of simulations, load delay slots were filled,
where possible, by instructions from within basic blocks to
simulate the effect of simple static software scheduling. In
the second simulation, delay slots were filled, where possi-
ble, by instructions, without regard to basic block bounda-
ries, to simulate dynamic or hardware supported slot fill-
ing. Though the data in Table 4 shows that dynamic load
delay slot hiding could potentially be much better at hiding
load delay slots than static instruction scheduling, dynamic
schemes would require out-of-order instruction execution,
extra register-file ports, and a separate load address adder.
This extra hardware will increase the cycle time. Rather
than trying to estimate the change in t.,, we assume static
instruction scheduling in the remainder of our analysis, and
refer to Table 4 to estimate the performance of dynamic
scheduling or to estimate how much the t_,, could be in-
creased in a dynamic scheme before it has less performance
than static instruction scheduling.

TABLE 4
THE INCREASE IN CPI DUE TO LoAD DELAY CYCLES

Static Dynamic
Delay slts Delay cycles per load Extra Delay cycles per load Extra
CprI CPI
1 0.21 0.05 0.04 0.01
2 0.62 0.18 0.19 0.05
3 1.21 0.29 0.39 0.08

Fig. 5 shows CPI versus d-cache size for zero through
three delay cycles. As in the i-cache experiments, the block
sizes of the caches have been optimized for refill latency
and miss penalty, see (3). This figure also shows the effect
that load delay cycles have on CPI. We have assumed that
load instructions are interlocked. This avoids code expan-
sion when load delay slots cannot be filled with useful in-
structions. The figure shows that the performance impact of
load delays becomes more pronounced for values greater
than one cycle. In fact, in order to decrease CPI after in-
creasing the number of load delay cycles from one to two
requires at least a four-fold increase in cache size.

Fig. 6 combines the effects of varying t.,, with the varia-
tion of d-cache size. This plot shows CPI for d-caches with
two delay cycles and perfect compile time instruction sched-
uling to help hide load delays, and d, = 0. The curves in this
figure will be shifted up or down by the same distances as
the curves in Fig. 5 for different numbers of delay cycles.

The CPI analysis of pipelined caches shows that, for low
degrees of pipelining, it is possible to decrease overall CPI
by trading off increased pipeline depth for a larger cache
size. This trade-off is more beneficial for the i-cache than for
the d-cache because techniques for mitigating the effect of
delay cycles are more successful on the instruction stream.
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4 CALCULATING FEASIBLE CPU CycLE TIMES

Calculating feasible values for t., (S, d) requires an expres-
sion for the cache access time as a function of its size,
teace(S). Intuitively, we would expect this function to yield
an increasing value of t. .. as S grows larger. The exact
nature of this function is highly dependent on implementa-
tion details. To provide a concrete example, in the next sub-
section, we develop a function for t_,,. for a direct-mapped
cache that is implemented from GaAs SRAM chips
mounted as bare die directly on a multichip module (MCM)
[9]. Such functions, derived in terms of basic electrical
properties and circuit geometries, are usually referred to as
“macromodels” [15].

4.1 Cache Access Time

The access time of an MCM-based cache t.,.. can be di-
vided into two parts: the on- chip access time of the SRAM
array, tg,,,, and the signal delay from the CPU to the cache,
t,cn- The equation for t., . is given by

teache = tsram + 2tycm - (4)

In general, t,,.,, is dependent upon the electrical charac-
teristics of the MCM interconnect (R, L, and C) and the
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longest distance from the CPU to any cache SRAM chip.
Given n, the number of SRAM chips in the i-cache or d-cache,
t,,ou CaN be approximated by the following linear equation

tyem = Ko + KN, (5)

where k; is a constant term associated with the delay of the
off-chip drivers and receivers and k, is a linear coefficient
that represents the additional delay per chip. For example,
if n is the number of SRAM chips in the i-cache or d-cache,
one might arrange the chips in a ,/n/2 x v/2n rectangle, as

shown in Fig. 7. If the CPU is placed in the middle of the
long side of this rectangle, the maximum length of a wire
from the CPU to any chip is pv/2n, where p is the average
chip pitch. More specifically, the term is defined as the av-
erage of the horizontal and vertical pitches of the chip, in-
cluding the width of adjacent wiring channels. The value of
the linear coefficient can be expressed as

2
ki = ZoChong + 2P RycmCumcm (6)

where Z, is the characteristic impedance of the MCM inter-
connect and R,,,, and C,,.,, are the resistance and capaci-
tance per unit length of interconnect. This equation is a
modified form of an equation for the packaging delay of
interconnect presented in [20]. The first term of (6) is the
delay due to parasitic capacitance, C,, of the bonding
method and the pad that connect the chip to the MCM. The
second term is the distributed RC delay of the MCM inter-
connection lines and is proportional to the square of the
length of the MCM interconnect that is being driven. How-
ever, this length is proportional to the square root of the
number of chips in the cache n, making the second term
proportional to n. Equation (6) assumes the interconnect is
quite lossy and so neglects any delay from transmission line
behavior. The value of k, calculated using (6) is within one
percent of the value calculated using SPICE circuit analysis
of actual layouts [9].

pa2n 520
4+“—> +“—>
A
i-cache| [CPU| [d-cache p J2n

v

Fig. 7. Instruction and data cache layout: the minimum delay arrange-
ment of 2n cache SRAM chips.

If the SRAMSs have a size of S,,, bits each, then n can be
replaced in the above equations by S/S.,,, and (4) through
(6) can be combined to produce the following expression
for t e

=2
[ZOCcond + Zp RMCMCMCM]' (7)

Equation (7) thus defines t_,., for an MCM-based direct-
mapped cache as a function of its size S. In this case, it is a
linear function of cache size.

teacre = tsram + 2Ko + S
SRAM
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The macromodel for t_,.,. defined by (7) is, of course,
specific to particular SRAM chips and MCM technology. In
general, the cache may be on a PCB, MCM, or on the same
chip as the CPU. More recently, functions for a variety of
on-chip cache organizations have been developed [21] that
could be used for a similar analysis of on-chip caches.
Whatever the case, the important point from the multilevel
optimization viewpoint is to develop a macromodel for

t..ce @S @ function of cache size.

4.2 Tabulating (S, d)

Fig. 8 shows the multistage instruction execution pipeline
of our example processor. This pipeline consists of d, in-
struction fetch stages (the IFs), an instruction decode stage
(ID), an execution stage (EX), d, data fetch stages (the DFs),
and a write back stage (WB). In the system, there are three
interlocking circular pipelines that could potentially set the
minimum CPU cycle time. Two of these circular pipelines
are shown in Fig. 1. The top one corresponds to the IF and
ID stages in Fig. 8, and the bottom one corresponds to the
EX and DF stages in Fig. 8. The third circular pipeline is
simply the EX stage and arises because of the need to recy-
cle ALU results directly back into the ALU when data de-
pendencies exist between two consecutive instructions. If
we assume, for the moment, that both the i- and d-caches
have the same pipeline depth, d, then the minimum CPU
cycle time t_,,, will have to satisfy the following inequalities
as a result of the constraints imposed by the pipelines,

tooy 2 teacre + tabor
PU = d+1

tepu 2 tary ®)

where t, . is the time it takes to compute the cache address
in the ID or EX stages of the pipeline, t, , and is the delay
through the ALU (typically, t, , and t,_ . are equal). From
(8), it follows that fixing d causes t,, to get longer as t_,...
increases. In particular, larger caches which have longer
access times result in longer CPU cycle times. Increasing the
value of d by placing more latches along the cache access
path to increase the number of pipeline stages makes it pos-
sible to reduce t

CPU"

d| instruction fetch stages Ob data fetch stages

-t 4 -

IF | ooeemeeeeesss IF | ID | EX | DF |- DF [ WB

Fig. 8. Pipeline stages for i- and d-caches. See Fig. 1

To more accurately determine how t_,, varies with cache
size and pipeline depth, we used the timing analyzer de-
veloped in [14] to estimate t.,, for cache sizes of one to
32KW and cache pipeline depth values of zero to three. The
value of t,.,. is estimated using the delay model for MCM-
based caches that was developed above. We have assumed
that the SRAM chips have both address and data registers.
The overhead delay of these latches was included in all
timing analyses. In each case, the timing analyzer was used
to optimize the timing of the circuit using a multiphase

clocking scheme. Optimized clocking produces a t,,, which
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increases by ﬁ for each unit increase in the cache access

time, t.,.. This means that there is a smaller dependence
of t_,, on cache access time in deeper cache pipelines. The
results of the timing analysis are tabulated in Table 5. The
minimum cycle time (3.5 ns) shown in the table is set by the
time required to add two integer operands in the ALU (2.1
ns) and feed the result back to the ALU (1.4 ns).

TABLE 5
OPTIMAL CYCLE TIMES, tep (S, d),
FOR i- AND d-CACHES IN NANOSECONDS

Instruction cache Data cache
Cache size
d=0 (d=1|d=2|{d=3]d=0|d=1|d=2| d=3
1KW | 100 | 50 | 35 35 92 | 46 | 35 35
2KW 1 101 | 5.1 335 3.5 94 | 47 | 35 35
4KW § 103 | 5.2 35 35 ) 96 | 48 | 35 3.5
8KW ] 109 | 54 | 3.6 35 1101 | 51 35 35
16KW § 120 | 60 | 40 | 35 | 112 | 56 | 3.7 | 3.5
32KW § 142 | 7.1 4.7 35 134 | 67 | 45 | 35

The data in Table 5 shows that, for a pipeline depth of
zero, the i- and d-caches limit t., to more than 10 ns.
Clearly, requiring the cache to be accessed in the same cycle
as the execution unit will lead to excessively long cycle
times compared to the ALU add time, which is 2.1 ns.
When the pipeline depths of the i- and d-caches are in-
creased to three, the feedback loop around the ALU is criti-
cal for all cache sizes, and the cycle time is only 3.5 ns.

5 CALCULATING TPI

The cache experiments have been presented above in terms
of i-cache or d-cache. In order to combine a particular i-
cache organization and a d-cache organization, we take the
maximum t_,, of each as the new system cycle time t_,,.
These are combined with the results of Fig. 3 through Fig. 6
to give Fig. 9 for the case when the i- and d-caches are
equal. Note that the CPI values in Fig. 3 through Fig. 6 in-
cludes the effects of 4KW zero delay d- and i-caches, re-
spectively. Their effect was first subtracted before the com-
bined CPI figure was calculated.

A number of conclusions can be drawn from Fig. 9. It
shows that when the primary cache is divided equally be-
tween instruction and data, performance is maximized
when the number of branch delay slots is equal to the num-
ber of load delay slots, i.e., d, = d,. (This is not true when the
i- and d-caches are of different sizes.) The reason for this is
that pipelining the different sides of the cache to different
depths causes the t,, set by one side to be shorter than that
of the other. Since the side with the longest cycle time will
set the system cycle time, the extra pipelining on the other
side will be wasted, i.e., CPI will increase without reducing
t..,- Fig. 9 also shows that, for every combination of load
and branch delay slots, there is a cache size that maximizes
performance. Maximum performance is reached for me-
dium size caches at TPl = 6.8 ns, whend, =3,d, =3, S =
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di=3,d="1
di=2,dy=1
di=1.0,=3
di=1,dy=1
TPI (ns) 41 -2
d=3.d,=2

di=2,d,=2

d=2,0,=3

Fdtomtt by

T T T 1
BKW 16KW 32KW B64KW

T
4KW

d=3,0,=3

Total i- and d-cache size

Fig. 9. TPI for a system with pipelined caches: TPI vs. total cache size
for various instruction and data cache delay-slot combinations. The
graph for d = 3, d, = 3 reaches its minimum at 64KW; it starts to in-
crease with larger caches.

64KW, and t.,, = 3.5 ns. However, a more economical de-
sign point of d, = 2, d, = 2, S = 16KW, and t.,, = 3.6 ns re-
sults in a value of TPI only marginally greater (7.0 ns) than
that obtained with the 64KW cache. The difference is well
within experimental variance and, so, this would appear to
be a better estimate for the optimal point.

If dynamic out-of-order load execution were used in-
stead of static load instruction scheduling, a new maximum
TPI1 = 6.2 ns could be reached with the number of branch
and load delay slots both equal to three and a combined
cache size of 64KW. The value of TPI is strongly dependent
on the cycle time. We calculate that, if the implementation
of out-of-order load execution required more than a 10 per-
cent increase in t., the performance of the dynamic
scheme would be worse than the performance of the best
static load delay scheduling implementation.

Different cache miss penalties change the performance
and location of the optimal design points: higher penalties
require an increase in both the cache size and pipeline
depth. Lower penalties have the opposite effect [9]. In-
creasing the number of branch delay slots increases CPI less
than a comparable increase in load delay slots. Smaller refill
penalties make it possible to take advantage of this fact by
using a larger size i-cache than d-cache and pipelining the
access of the i-cache more deeply.

6 CONCLUSIONS

This paper has studied the design of pipelined primary
caches, using a multilevel design optimization procedure.
The objective of this optimization is to find the cache size
and cache pipeline depth that maximizes system perform-
ance. The methodology fits naturally into the “early on”
design studies that should be undertaken when commenc-
ing a design.

Trace driven simulation is a well-known technique. We
have demonstrated that it is possible to accurately estimate
the impact of cache size and cache pipeline depth on CPU
cycle time, using macromodels based on the implementa-
tion technology and timing analysis. Combining trace
driven simulation with timing analysis enables us to pro-
vide the important link between processor architecture and
implementation technology with processor performance.
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This is a link that has been recognized [22], but it is often
ignored in the literature on processor architecture.

The multilevel optimization technique is illustrated with
the design of a pipelined cache for a high clock rate MIPS-
based architecture. The results of this design exercise show
that, because processors with pipelined caches can have
shorter CPU cycle times and larger caches, a significant
performance advantage is gained by using two or three
pipeline stages to fetch data from the cache. Furthermore,
pipeline depth is better tolerated on the instruction side
than on the data side, where basic-block boundaries make
static instruction scheduling less effective at hiding load-
delay slots. This suggests that, for maximum performance,
the instruction cache should be larger and more deeply
pipelined than the data cache.

We reemphasize that the results are only optimal for the
implementation technologies chosen for the design exercise;
other choices could result in quite different optimal de-
signs. The exercise is primarily to illustrate the steps in the
design of pipelined caches using multilevel optimization;
however, it does exemplify the importance of pipelined
caches if high clock rate processors are to achieve high per-
formance, because pipelining the cache can make it feasible
to improve CPU cycle time and CPI at the same time. Pipe-
lining reduces or eliminates the dependence of the cycle
time on cache access time. This makes it possible to use
larger caches, which improve CPI, without affecting the
cycle time. Such a situation suggests that the cache size ver-
sus set-associativity trade-off may need to be reexamined. If
CPU cycle time is not dependent on the access time of a
pipelined cache, then increasing the associativity of the
cache to lower the miss ratio will provide a larger perform-
ance improvement.
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